Lesson 11. Vector Functions and Space Curves

1 Today...

- How do we describe curves in 3D space, especially those that are not lines?

2 Vector functions

- A vector function
- takes a real number as input and
- outputs a vector
- For example, a 3D vector function:

$$
\vec{r}(t)=\langle f(t), g(t), h(t)\rangle
$$

where $f(t), g(t)$, and $h(t)$ are real-valued functions

- $f(t), g(t)$, and $h(t)$ are the component functions of $\vec{r}(t)$
- We can also have 2D vector functions: $\vec{r}(t)=\langle f(t), g(t)\rangle$

Example 1. Let $\vec{r}(t)=\left\langle t, 1-t^{2}\right\rangle$. Draw the vectors $\vec{r}(0), \vec{r}(1)$, and $\vec{r}(2)$ with their tails starting at the origin.

3 Space curves

- Suppose f, g, h are (continuous) real-valued functions
- A space curve is the set of all points (x, y, z) in space that satisfy

$$
x=f(t) \quad y=g(t) \quad z=h(t)
$$

as t varies in some interval, such as $(-\infty,+\infty)$

- Alternatively, we can describe the same curve by the vector function $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$
- Each value of t results in the position vector $\vec{r}(t)$ of a point on the curve
- Recall the parametric equations for a line in 3D space:

$$
x=x_{0}+a t \quad y=y_{0}+b t \quad z=z_{0}+c t
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line, and $\langle a, b, c\rangle$ is the direction vector of the line

- This fits the definition of a space curve: let

$$
f(t)=x_{0}+a t \quad g(t)=y_{0}+b t \quad h(t)=z_{0}+c t
$$

Example 2. Let $\vec{r}(t)=\left\langle 2,9-t^{2}, t\right\rangle$.
a. Evaluate $\vec{r}(t)$ at $t=0,1,2,3$.
b. Sketch the curve given by $\vec{r}(t)$.

Example 3. Let $\vec{r}(t)=\langle\cos t, \sin t, t\rangle$.
a. Evaluate $\vec{r}(t)$ at $t=0, \pi / 2, \pi, 3 \pi / 2,2 \pi$.
b. Sketch the curve given by $\vec{r}(t)$.

Example 4. Match the vector functions with the graphs. Give reasons for your choices.
a. $\vec{r}(t)=\langle t \cos t, t \sin t, t\rangle$
b. $\vec{r}(t)=\langle\cos t, \sin t, \sin 2 t\rangle$
c. $\vec{r}(t)=\left\langle e^{-3 t / 5}, t, t^{2}\right\rangle$

Example 5. The positions of two airplanes at time t are given by the vector functions

$$
\vec{r}_{1}(t)=\langle 1+2 t, 1+6 t, 1+14 t\rangle \quad \vec{r}_{2}(t)=\left\langle t, t^{2}, t^{3}\right\rangle
$$

Do the airplanes collide? Do their paths intersect?

